skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Uddin, Syed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta–circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line. Our model suggests enhanced CSM dust concentration at increasing distances from the SN as compared to what can be expected from the density profile of the mass loss from a steady stellar wind. By the time of the last mid-infrared observations at day +1,041, a total amount of 1.2 ± 0.2 × 10−2 Mof new dust has been formed by SN 2018evt, making SN 2018evt one of the most prolific dust factories among supernovae with evidence of dust formation. The unprecedented witness of the intense production procedure of dust may shed light on the perceptions of dust formation in cosmic history. 
    more » « less
  2. Photometry shown in Figure Extended Data 4 (a) of Wang, Lingzhi, et al. 2024, Nature Astronomy, https://doi.org/10.1038/s41550-024-02197-9.Phase is days since B-band maximum MJD 58352.BVgri-band photometry from 1-m network at Las Cumbres Observatory.SN2018evt_lcogt_lc.datBVgri-band photometry from 2.4-m LiJiang Telescope (LJT) and 60/90-cm XingLong Schmidt Telescope (XLST)SN2018evt_xlt_ljt_lc.datOptical and NIR spectra data shown in Figures Extended Data 2, 3, and Table Extended Data 2 of Wang, Lingzhi, et al. 2024, Nature Astronomy, NIR spectraSN2018evt_181224_spex.txt SN2018evt_190511_spex.txtSN2018evt_190617_spex.txtSN2018evt_200119_spex.txtSN2018evt_20190101_gnirs.txtSN2018evt_20190108_gnirs.txtSN2018evt_20190516_fire.datSN2018evt_20190712_fire.datOptical spectraOptical spectra observed with 2.4-m LiJiang Telescope (LJT)SN2018evt_190104_LJT_G3.datSN2018evt_190131_LJT_G3.datSN2018evt_190328_LJT_G3.datSN2018evt_190520_LJT_G3.datOptical spectra observed with 2.16-m XingLong Telescope (XLT)SN2018evt_20190208_2458551.3570_bao_bfosc.txtSN2018evt_20190220_2458563.3588_bao-bfosc.txtSN2018evt_20190413_2458587.2169_bao-bfosc.txtOptical spectra observed with 3.6-m ESO New Technology Telescope (NTT)SN2018evt_20180812_NTT_Gr13_Free_slit1.0_58346_1_e.asciSN2018evt_20190425_NTT_Gr13_Free_slit1.0_58599_1_e.asciSN2018evt_20190512_NTT_Gr13_Free_slit1.0_58616_1_e.asciSN2018evt_20190608_NTT_Gr13_Free_slit1.0_58643_1_e.asciSN2018evt_20200218_NTT_Gr13_Free_slit1.0_58899_1_e.asciSN2018evt_20200322_NTT_Gr13_Free_slit1.0_58931_1_e.asciOptical spectrum observed with WiFes mounted on 2.3-m telescope at the Siding Spring Observatory (WiFeS)SN2018evt_20190624_ANU_Wifes.datOptical spectrum observed with 2.0-m Faulkes Telescope North (FTN)/FLOYDSSN2018evt_20191224_FTN-floyds-redblu_145742.306.asciiSN2018evt_20200119_FTN-floyds-redblu_133856.906.asciiSN2018evt_20200203_FTN-floyds-redblu_125905.990.ascii 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract We present the largest and most homogeneous collection of near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia): 339 spectra of 98 individual SNe obtained as part of the Carnegie Supernova Project-II. These spectra, obtained with the FIRE spectrograph on the 6.5 m Magellan Baade telescope, have a spectral range of 0.8–2.5μm. Using this sample, we explore the NIR spectral diversity of SNe Ia and construct a template of spectral time series as a function of the light-curve-shape parameter, color stretchsBV. Principal component analysis is applied to characterize the diversity of the spectral features and reduce data dimensionality to a smaller subspace. Gaussian process regression is then used to model the subspace dependence on phase and light-curve shape and the associated uncertainty. Our template is able to predict spectral variations that are correlated withsBV, such as the hallmark NIR features: Mgiiat early times and theH-band break after peak. Using this template reduces the systematic uncertainties inK-corrections by ∼90% compared to those from the Hsiao template. These uncertainties, defined as the meanK-correction differences computed with the color-matched template and observed spectra, are on the level of 4 × 10−4mag on average. This template can serve as the baseline spectral energy distribution for light-curve fitters and can identify peculiar spectral features that might point to compelling physics. The results presented here will substantially improve future SN Ia cosmological experiments, for both nearby and distant samples. 
    more » « less
  7. The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a “Cosmology” sample of ˜100 Type Ia supernovae located in the smooth Hubble flow (0.03 ≲ z ≲ 0.10). Light curves were also obtained of a “Physics” sample composed of 90 nearby Type Ia supernovae at z ≤ 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented. 
    more » « less